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In this paper a new micromechanical model for predicting the transverse modulus of
unidirectional continuous and discontinuous fiber composites is proposed. This model is
based on modeling a composite with a regular array of volume elements and constructing
a stress pattern based on simple averaging procedures in the direction transverse to the
fiber axis for a representative volume element. The effects of fiber aspect ratio, interfiber
spacing and fiber end gap on the transverse modulus of discontinuous fiber composites are
discussed in detail. The predictions of the model are compared with existing experimental
results for various fiber/matrix systems and very good agreement is found. The present
model has advantages over other existing models not only because the effects of fiber
aspect ratio, interfiber spacing and fiber end gap are taken into account and the expression
for the transverse modulus of composites is simple in form but also because the present
model gives precise predictions of the transverse composite modulus. © 1998 Kluwer
Academic Publishers

1. Introduction The Halpin-Tsai equation has been widely cited in the
The prediction of the transverse modulis,) of uni-  literature because it provides a fairly good prediction of
directional fiber composites is of great importance notEcy for continuous fiber composites. Shaffer [11] de-
only because the transverse modulus itself is one imporived two equations for the transverse composite mod-
tant property of engineering materials but also becausglus using the mechanics of materials method. One of
it is used as an elastic constant in predicting the stiffthese equations is applicable when fiber volume frac-
ness of general laminates or the off-axis stiffness otion is less than 68% and the other when fiber vol-
unidirectional laminates [1] and the stiffness of short-ume fraction is greater than 68%. Both equations pre-
fiber-reinforced composites [2—4]. The theoretical ex-dict low values when compared with experiment. Paul
pression forEc, must be simple in form in order to use [12] derived bounds foE, by treating the compos-
it conveniently as an elastic constant in the predictiorite as being transversely isotropic. Paul’'s bounds are
of the stiffness of general laminates [1] or short-fibertoo far apart to be of much practical utility. Tsai [13]
composites [2—-4]. There is large body of work on mod-considered the problem of parallel elastic cylindrical
els that predict the transverse modulus of unidirectionainclusions in an elastic matrix and derived upper and
fiber composites in terms of the properties of the coniower bounds foiE.y by interchanging the role of fiber
stituents. The models can be classified into two cateand matrix in the potential energy theorem. Since the
gories according to whether the transverse compositeounds are far apart, Tsai hypothesized that the trans-
modulus depends on fiber aspect ratio. verse composite modulus lies somewhere between the
Most of the existing models assumed that the transtwo bounds. Hashin and Rosen [14] considered both
verse composite modulu€gy) was independent of hexagonal and random arrays of fibers. They used po-
fiber length-to-diameter ratio. The inverse Rule-of-tential and complementary energy theorems to derive
Mixtures (iRoM) equation [1, 5, 6] (i.e. the constant two bounds foiE.y. The bounds obtained by Hashin and
stress model [7]) foE.y was derived by assuming that Rosen are much improved. Numerical solution tech-
the fibers have a rectangular cross-section and employiques have also been used to evaluate the transverse
ing the Rules-of-Mixtures for the strains of the com- composite modulus. Adams and Doner [15] used the
posite and its constituents. The iRoM equation wadinite difference method to predict the transverse mod-
modified by considering the constitutive relations of ulus of continuous fiber composites. Chen and Lin [16]
the constituents [1]. The advantage of the two modelsind Theocarigt al. [17] employed the finite-element
is that they are simple in form and thus convenient tomethod for the purpose. Although numerical model-
use, but they were not satisfactorily applied to expering of the transverse composite modulus is in principle
imental results [1]. The Halpin-Tsai equation [8—10] possible, the effort required for its realization is high,
was derived using a semi-empirical approach [8—10]namely time-consuming and high cost.
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The above models are only suitable for continuousor experimental results and hence its validity was not
fiber composites since they neglected the effect of fibeexamined.
aspect ratio. Some other models considered the ef- In this paper, we develop a new micromechanical
fect of fiber aspect ratio. The self-consistent approachmodel for predicting the transverse modulus of unidi-
namely the method of Hill [18, 19], was adopted to rectional continuous and discontinuous fiber compos-
derive the transverse modulus of unidirectional shorites, which is based on modeling a composite with a
fiber composites [20, 21]. The model considered theegular array of volume elements, constructing a stress
dependence dEy on fiber aspect ratio. However, the pattern using simple averaging approaches for a rep-
final expression is given as a function of longitudinal resentative volume element in the direction transverse
modulus, bulk modulus, shear modulus and Poisson’so the fiber axis. With the present model the effects
ratio. Thus, it is not convenient to use the expressiorof fiber aspect ratio, interfiber spacing and fiber end
to predictE.y. Also, the cell-stress approach was em-gap on the transverse modulus of discontinuous com-
ployed by Chen and Cheng [22] to derive the transposites are discussed in detail. The present model is
verse modulus of short fiber composites. But their fi-compared with some existing experimental results for
nal expression foE.y is quite complicated and hence various fiber/matrix systems. In addition, the present
is not convenient to use and its predictions were nomodel is compared with other models and the advan-
compared with any experimental results. The effectdages of the present model are demonstrated.
of fiber aspect ratio, interfiber spacing and fiber end
gap on the transverse composite modulus could be de-
rived in principle but were not studied possibly due 2. Theory
to the complexity of the expression f&,. It will be  Consider a rectangular specimen with lengths;0t;
demonstrated in the present study that the Chen-Cherandcs (the c; axis is parallel to the fiber axis or the
expression gives an underestimation of the transversaxis) as shown in Fig. 1. It is assumed that the fibers in
composite modulus. Moreover, Whitney [23] proposedthe unidirectional fiber composite are distributed uni-
a model for the transverse modulus for unidirectionalformly in the matrix and the fiber/matrix interfacial
short composites by modifying the three-phase embedadhesion is perfect (only if the fiber/matrix interfacial
ded concentric cylinder model [24]. The fiber and ma-adhesion is good enough, the interfacial adhesion has
trix are represented as concentric cylinders. Howeveljttle influence on transverse composite modulus since
the theory was not compared with either other theories. is a property of material at low strain). The case
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Figure 1 Schematic drawing of a continuous fiber composite and a corresponding simple representative volume element. A perfect bond is assumed
between the fiber and the matrix.
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of continuous fibers will be considered first. For bothIn addition, we suppose thaty = my(d; + é) and
square and hexagonal arrangements of fibers, a rep> = my(d; + §), wherem; andm; are integers. Thus,
resentative volume element can be chosen as showthere aren; x m, representative volume elements in the
in Fig. 1. The representative volume element can beomposite. The fiber volume fraction can be obtained

divided into three regions: I, Il and Il along thez  as:

plane as shown in Fig. 1. In regions | and lll, the ma-

trix bears the load alone and hence the mean matrix nr2

strainemy can be supposed to be approximately equal vf = m (7)

to:
_ Equations 5-7 can be combined to give the mean trans-
emy = 0y/Em (1) verse fiber strain:

whereoy is the applied stress in thedirection ancEn, - Oy ®)

the matrix modulus. Y= T, Tut

In any given cross-section ABB’ of region Il par- 4 — Ery+|1- 4 Em

allel to thex-z plane (where the line /8’ not shown in
Fig. 1 is parallel to the line AB), the stress equilibrium

condition can be written as follows: Therefore, the composite straigy is given by

2§ di +38 — 2ryj . @) gcy = vnéty + (v — v )emy
dr+8 T di+s  MWT Y di _ 5

= — — & 9
df+38fy+df+58my ©)

whereoty andonmy are the transverse fiber stress and

the transverse matrix stress, respectiveilyis the fiber  \yherey,, v, andvy; are the volume fractions of regions
diameter,s the interfiber spacing and g the string | || and 11, respectively. Consequently, by inserting

length of the fiber cross section intersecting with theEquanns 1, 7 and 8 into Equation 9, we obtain
cross-section ABB\'.

In region Il, both the matrix and the fiber bear the
load. In the given cross-section ABB, the matrix

/4v
Ecy =
strain must be the same as the fiber strain since the = 7TUf TVt
Efy + Em

fiber/matrix interface is assumed to be perfect (i.e. the 4
fiber is completely bonded with the matrix), otherwise
the fiber would debond from the matrix. Thus, Equation 11— /4U (10)
2 becomes: Em
2r i di +46 — 2ry; Sincescy = oy/E.y, the transverse composite modulus

il L trean = y = 9y/ Ecy:

di +6 Eryery + di +6 Emery =0y (3) Ecy follows immediately from Equation 10:
whereE¢y is the transverse fiber modulus ang the 1 [Avs
transverse fiber strain. =

. . - E / -/
We now estimate the mean transverse fiber strgin o Vmui/AEwy + (1~ /mui/4)E

First, we need to evaluate the mean valuepfnamely, 1— Jdvi/m
rti. Assume the fiber diameter is uniformly divided +¥ (11)

into n segmentsr{ is very large), the length of each Em

segment s then equal to &/n (1 is the fiber radius). Equation 11 gives the transverse modulus of unidirec-

Thus : . ) : .
tional continuous fiber composites. An expression for
the transverse modulus of discontinuous fiber compos-

x erf' — nr2 (4) itesis now developed.
—t Assume that fibers of a length are distributed
uniformly in the composite, and the interfibre spac-
and ing is § and the gap between two end-to-end fibers is
L1. Arepresentative volume element is arbitrarily cho-
_ P orhoow sen as shown in Fig. 2. The fiber volume fraction is
i = =—— = —I¢ (5) then
n 4
Replacing ¢; with Fy; ande ¢y with g7, in Equation 3 oy = wrily
gives: (2r¢ +8)2(Ls +Ly)
2!’_“ _ df —|—8—2I'_fi _ T
a3t g s v =y (O Saarednarlgy P
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Figure 2 Schematic drawing of a discontinuous fiber composite and a corresponding simple representative volume element. A perfect bond is assumed
between the fiber and the matrix.

Using the same treatment as for the case of continuBy replacing 2¢; with 2r¢; ande ¢y with &y in Equa-
ous fibers, we divide the cross section of the elemention 13 and combining with Equation 12, then we get
into three regions parallel to thez plane as shown in the mean transverse fiber strain

Fig. 2. In regions | and lll, the matrix bears load alone,

then the mean matrix strain is the same as expressed #y =

Equation 1.
Inregion 1, both the fiber and the matrix bear the load oy
and their strains in this region should be approximately TUf TUf
the same. The stress equilibrium equation in the cross:/ 77—~ Efy + (1 - —) Em
section parallel to th&-z plane denoted by the dotted Ald+La/Lo) 4ld+La/Lo)
line can be written as follows: (14)
The composite strain is then given by
2reily¢ E
&
dr +o)(Ls+Ly o di =4 5 (15)
Cy_df+8 fy df + 6 my
+[1_ 2riily }Emgfy =0, (13) By inserting Equations 1, 12 and 14 into Equation 15
(df +8) (Lt +L1) and using the relationship, = oy/E.y, we obtain
1 VAi(1+Li/L1)/m N (1— 41+ Li/Ly)/m) (16)
Eey mvoi/[AA+L1/Li)IEsy+ (1— /mvi/[AA+ L1/L1)])Em Em
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In the limit of L1/L + = 0, the transverse modulus of
discontinuous fiber composites becomes independent
ofthe fiber length (or fiber aspect ratio) and Equation 16
reduces to Equation 11.

g
E%
Ho

3. Results and discussion
The following data are used for the parameters, ex-
cept where noted otherwis&;, = 724 GPa,E, =
21GPalL; =10um,L; = 1000pum,ds = 10 um

andv; = 0.50. The transverse composite modulus is
evaluated based on Equations 12 and 16. The effects
of fiber aspect ratio, interfiber spacing and fiber-end-
gap on the transverse modulus of discontinuous fiber
composites are discussed in detail in the following.

Fig. 3 exhibits the effects of fiber aspect ratio and
interfiber spacing on the transverse modulus of discon-
tinuous fiber composites. Itcan be seenfrom Fig. 3athat _
the transverse composite modulus decreases rapidlyZ
with the increase of fiber aspect ratio when it is small
(e.g.< 100) whereas it decreases slowly with increas-
ing fiber aspect ratio and becomes insensitive to the
fiber aspect ratio when it is large (exg.100). This is
because increasing the fiber length decreases the num
ber of fiber ends and thus the amount of matrix be-
tween fiber ends. Since the amount of matrix is fixed,
it moves towards the space between the fibers and in-
creases the interfiber spacing and thus decreases the
transverse composite modulus. Consequently, it is ob-
served in Fig. 3b that the interfiber spacing increases
rapidly with increase of fiber aspect ratio when it is
small (e.g.< 100) but increases slowly with fiber as-
pectratio and eventually becomes insensitive to it when
itislarge (e.g> 100). The transverse composite modu- 3
lus decreases almost linearly with increase of interfiber =
spacing (Fig. 3c).

Fig. 4 reveals the effect of fiber end gap on the trans-
verse modulus of composites. Since the interfiber spac-
ing decreases almost linearly with increase of fiber end
gap (see Fig. 4a) and the transverse composite modulus
decreases with increase of interfiber spacing as shown
in Fig. 3c, it is observed that the transverse modulus of
composites increases almost linearly with increase of
fiber end gap (see Fig. 4b).
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Figure 3 Effects of fiber aspect ratio and interfiber spacing on the trans-

verse modulus of discontinuous fiber compositesEgy Em vsL ¢ /ds
(b) 8/d¢ vsL¢/df and (C)Ecy/Em vsé/ds.

4. Application and comparison
We now compare predictions using Equation 16 with

some existing experimental results [1, 25, 26] together —
cy

with predictions of the iRoM Equation [1, 5-7] and its
modified version [1], the Halpin-Tsai Equation [8—10],
the self-consistent theory [20, 21], the Chen-Cheng the-
ory (i.e. the cell-stress approach) [22] and the Whitney
theory [23].

The iRoM Equation is [1, 5-7]:

The modified iRoM (miRoM) Equation is [1]:

Vf Um
V2Em/Ety + V3 Ety/Em — 2vfvm
—UVfUm

viEfy + vmEm
(18)

The Halpin-Tsai Equation [8—10] can be written as fol-
lows:

1 _vf

Um

E.. (17)

Ecy = Em(1+ 20v¢)/(1 — avy) (19)
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Figure 4 Effect of fiber end gap on the transverse modulus of discon-
tinuous fiber composites: (a)d+ vsLy/ds and (b)Ecy/Em vsL1/ds.

where
o= (Efy/Em - 1)/(Efy/Em +2) (20)

In Equations 17—20 the subscripis used to denote the

Equation 16 and the first three models above (Equa-
tions 17-19) are applied to some existing experimental
results for continuous, discontinuous and particulate
glass/epoxy composites (continuous and particulate
composites are the two limiting cases of discontin-
uous fiber composites) [25]. The results are listed
in Table I, where particular values of the parameters
are Efy=724 GPa, E,=21-2.8 GPays =0.22,

vm = 0.35 andv¢ = 0.5 (for short glass fibers and glass
beads) and 0.6 (for continuous glass fibers) [25]. For
the case of short-fibers,;/L + =0.02 was used. The
theoretical values of the transverse modulus (assuming
Ly=¢6 andL ¢ =d; =10 um) are also given in order

to compare the present theory with the experimental re-
sults for particulate composites. Table | shows that the
theoretical results predicted by Equation 16 agree very
well with the experimental results for the two cases of
continuous and discontinuous fibers. For the particulate
composite, the predicted values of the transverse modu-
lus by this theory are reasonably close to the experimen-
tal results. The difference in the latter can probably be
attributed to the fact that the fibers with an aspect ratio
of one are cylindrical in shape and not normal parti-
cles. The results predicted by the Halpin-Tsai Equation
(Equation 19) are approximately consistent with but
somewhat lower than the experimental results. How-
ever, the iRoM and miRoM (Equations 17 and 18) give
much lower predicted values of the transverse com-
posite modulus than those experimentally observed, as
reported in [1].

The predictions of the models above are also com-
pared with experimental results for the graphite/epoxy
composite system, where the graphite fibers are trans-
versely isotropic and the boron/epoxy composite sys-
tem, where the boron fibers have a very high modu-
lus [1]. The results are listed in Table I, where par-
ticular values for the parameters &gy =16.6 GPa
for graphite fibersE¢y =410 GPa for boron fibers,

transverse modulus of fibers for the case of transversel§,, = 3.45 GPay; = 0.2 for both fibersy,, = 0.35

isotropic fibers.

TABLE | Application of the present theory and other theories [1, 5,
[25]

andv; = 0.70 (for graphite fibers) and 0.50 (for boron

8-10] to the existing experimental results for some glass/epoxy composites

Transverse stiffnesgcy (GPa)

Experimental Halpin-Tsai iRoM miRoM The present
Material Em (GPa) v§ results equation equation equation model
Glass bead/epoxy 2.1 0.5 10.3 — — — 11.56
2.8 0.5 11.7 — — — 14.33
Short glass fiber/epoxy 21 0.5 9.6 7.44 4.08 4.59 9.09
Continuous glass fiber/epoxy 2.1 0.6 12.4 9.82 5.03 5.66 12.95
2.8 0.6 145 12.48 6.62 7.41 16.07

TABLE Il Application of the present theory and other theories [1, 5, 8-10] to the existing experimental results for a graphite/epoxy composite and

a boron/epoxy composite [1]

Transverse stiffnesgcy (GPa)

Experimental Halpin-Tsai iRoM miRoM The present
Material vf results equation equation equation model
Graphite/epoxy 0.70 10.3 10.11 7.74 8.21 11.40
Boron/epoxy 0.50 18.5 13.29 6.84 7.77 16.23
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------ Experimental results [26] The present theory
Self- i approach
4 r Self-consistent theory [20,21] 4 | Halpin.T:
...... alpin-Tsai equation
The present theory
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Figure 5 Comparison of the present theory with the self-consistent the-Figure 6 Comparison of the present theory with the self-consistent the-
ory [20, 21] and experimental results [26] for a nylon 12-PRD49 system

ory [20, 21] and the Halpin-Tsai equation [8-10] in the predictions of
with L ¢ /d = 882 andE ¢ /Eq = 105. Y [20, 21] P a [8-10] P

the transverse composite modulus as a function of fiber volume fraction,
whereL ; /d; = 5and 100E¢/Em = 20,vs = 0.3 andvy, = 0.35.

fibers) [1]. Table Il reveals that for the graphite/epoxy
system the present theory and the Halpin-Tsai the
ory are in good agreement with the experimental re

by the Halpin-Tsai Equation which is for continuous
fiber composites. However, it has been clearly shown

It while the iRoM and it dified ; i in the present study and also in the self-consistent the-
sult whiie e 1kolM and 1ts modified version provide ory [20, 21] and the Whitney theory [23] that the trans-
lower predicted values than the experimental one. Fo

the boron/epoxy system, the present theory provides Verse modulus of a unidirectional short-fiber compos-

T i ) >S e is higher than that of a corresponding continuous
better prediction than all other three theories which OiVEipar co?nposite SinceE decreasegwith figber length
much lower values than the experimental result. 4 ’

X X ) and the Halpin-Tsai Equation has been well recognized
Fig. 5 depicts the comparison of the present theor)fo give good predictions for continuous fiber compos-

with the self-consistent theory [20, 21] and the ®Xites or somewhat lower predictions for some short-fiber

periments [26] on the transverse modulus for a nonnCom :
) o posites, therefore the Chen-Cheng theory would
12-PRDA9 composite systemwhég/ Er, = 105and underestimate the transverse modulus of unidirectional

L +/ds = 882. Auniform fiber distributioni.eby =8 gic00ntinuous fiber composites. Moreover, the effects

is assumed. At low fiber vqlume fractlons, the presentof interfiber spacing and fiber end gap on the transverse
theory agrees very well with the experimental results

but the predicted values with the self-consistent theor gomposite modulus were not studied using the Chen-

) S B(Zhengtheory, possibly because their expressioBdpr
are lower than the experimental values. At high flberis too complicated to use.

volume fractions the theoretical values are higher than Fig. 8 shows the comparison of the present theory

the experimental ones. For the present theory, the dis- . ) L i
crepancy may be attributed to the fact that the value 07;/:: [t8h_el\6\/]h\|ltvr;]?;;2?(/)rEy [2_3’]76(13”(3fth_e 331'2': dEz/aéle_cwa
3 m — ] - . —_—

fiber end gap It1) used may be greater than the reall (uniform fiber distribution). Fig. 8 shows that the pre-

value since the ends of fibers are closer to each Oth%icted values oF.y by the present theory are higher
cy

asvs increases. A greater value bf would lead to a . .
higher prediction of the transverse composite modulust.han those predicted by the Whitney theory [23]. The

The comparison of the present theory with the self-
consistent theory [20, 21] and the Halpin-Tsai equation
[8-10] is further made in Fig. 6, whete; /E,, = 20,

vi = 0.3 andv, = 0.35. The predicted values by 6 L
the present theory are somewhat higher than those prt
dicted by the self-consistent theory [20, 21]. At loy, 5
the predicted values by the Halpin-Tsai equation [8—10] &
lie between those predicted by the other two theories; & 3, 4
highv¢, the predicted values by the Halpin-Tsai equa-~
tion are lower than those predicted by the other two
theories.

The comparison of the present theory with the Chen-
Cheng theory (cell-stress model) [22] and the Halpin- =
Tsaiequation [8-10]is madein Fig. 7, whé&e/E,, = 0 0.1 02 0.3 0.4 0.5 0.6
21.19,L¢/df = 20 andL,/L ¢+ = 0.05. Fig. 7 shows
that the values of the transverse composite modulus
predicted by the present theory are higher than thosggure 7 Comparison of the present theory with the Chen-Cheng theory
by the other two theories and the predicted values byz2]and the Halpin-Tsai equation [8-10], where/d¢ = 20,L1/dt =
the Chen-Cheng theory are lower than those predicte®05 andE/Em = 21.19.

7

""" Chen-Cheng theory [22]

———  Halpin-Tsai equation [8-10]

The present theory

Vg
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