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In this paper a new micromechanical model for predicting the transverse modulus of
unidirectional continuous and discontinuous fiber composites is proposed. This model is
based on modeling a composite with a regular array of volume elements and constructing
a stress pattern based on simple averaging procedures in the direction transverse to the
fiber axis for a representative volume element. The effects of fiber aspect ratio, interfiber
spacing and fiber end gap on the transverse modulus of discontinuous fiber composites are
discussed in detail. The predictions of the model are compared with existing experimental
results for various fiber/matrix systems and very good agreement is found. The present
model has advantages over other existing models not only because the effects of fiber
aspect ratio, interfiber spacing and fiber end gap are taken into account and the expression
for the transverse modulus of composites is simple in form but also because the present
model gives precise predictions of the transverse composite modulus. C© 1998 Kluwer
Academic Publishers

1. Introduction
The prediction of the transverse modulus (Ecy) of uni-
directional fiber composites is of great importance not
only because the transverse modulus itself is one impor-
tant property of engineering materials but also because
it is used as an elastic constant in predicting the stiff-
ness of general laminates or the off-axis stiffness of
unidirectional laminates [1] and the stiffness of short-
fiber-reinforced composites [2–4]. The theoretical ex-
pression forEcy must be simple in form in order to use
it conveniently as an elastic constant in the prediction
of the stiffness of general laminates [1] or short-fiber
composites [2–4]. There is large body of work on mod-
els that predict the transverse modulus of unidirectional
fiber composites in terms of the properties of the con-
stituents. The models can be classified into two cate-
gories according to whether the transverse composite
modulus depends on fiber aspect ratio.

Most of the existing models assumed that the trans-
verse composite modulus (Ecy) was independent of
fiber length-to-diameter ratio. The inverse Rule-of-
Mixtures (iRoM) equation [1, 5, 6] (i.e. the constant
stress model [7]) forEcy was derived by assuming that
the fibers have a rectangular cross-section and employ-
ing the Rules-of-Mixtures for the strains of the com-
posite and its constituents. The iRoM equation was
modified by considering the constitutive relations of
the constituents [1]. The advantage of the two models
is that they are simple in form and thus convenient to
use, but they were not satisfactorily applied to exper-
imental results [1]. The Halpin-Tsai equation [8–10]
was derived using a semi-empirical approach [8–10].

The Halpin-Tsai equation has been widely cited in the
literature because it provides a fairly good prediction of
Ecy for continuous fiber composites. Shaffer [11] de-
rived two equations for the transverse composite mod-
ulus using the mechanics of materials method. One of
these equations is applicable when fiber volume frac-
tion is less than 68% and the other when fiber vol-
ume fraction is greater than 68%. Both equations pre-
dict low values when compared with experiment. Paul
[12] derived bounds forEcy by treating the compos-
ite as being transversely isotropic. Paul’s bounds are
too far apart to be of much practical utility. Tsai [13]
considered the problem of parallel elastic cylindrical
inclusions in an elastic matrix and derived upper and
lower bounds forEcy by interchanging the role of fiber
and matrix in the potential energy theorem. Since the
bounds are far apart, Tsai hypothesized that the trans-
verse composite modulus lies somewhere between the
two bounds. Hashin and Rosen [14] considered both
hexagonal and random arrays of fibers. They used po-
tential and complementary energy theorems to derive
two bounds forEcy. The bounds obtained by Hashin and
Rosen are much improved. Numerical solution tech-
niques have also been used to evaluate the transverse
composite modulus. Adams and Doner [15] used the
finite difference method to predict the transverse mod-
ulus of continuous fiber composites. Chen and Lin [16]
and Theocariset al. [17] employed the finite-element
method for the purpose. Although numerical model-
ing of the transverse composite modulus is in principle
possible, the effort required for its realization is high,
namely time-consuming and high cost.
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The above models are only suitable for continuous
fiber composites since they neglected the effect of fiber
aspect ratio. Some other models considered the ef-
fect of fiber aspect ratio. The self-consistent approach,
namely the method of Hill [18, 19], was adopted to
derive the transverse modulus of unidirectional short
fiber composites [20, 21]. The model considered the
dependence ofEcy on fiber aspect ratio. However, the
final expression is given as a function of longitudinal
modulus, bulk modulus, shear modulus and Poisson’s
ratio. Thus, it is not convenient to use the expression
to predictEcy. Also, the cell-stress approach was em-
ployed by Chen and Cheng [22] to derive the trans-
verse modulus of short fiber composites. But their fi-
nal expression forEcy is quite complicated and hence
is not convenient to use and its predictions were not
compared with any experimental results. The effects
of fiber aspect ratio, interfiber spacing and fiber end
gap on the transverse composite modulus could be de-
rived in principle but were not studied possibly due
to the complexity of the expression forEcy. It will be
demonstrated in the present study that the Chen-Cheng
expression gives an underestimation of the transverse
composite modulus. Moreover, Whitney [23] proposed
a model for the transverse modulus for unidirectional
short composites by modifying the three-phase embed-
ded concentric cylinder model [24]. The fiber and ma-
trix are represented as concentric cylinders. However,
the theory was not compared with either other theories

Figure 1 Schematic drawing of a continuous fiber composite and a corresponding simple representative volume element. A perfect bond is assumed
between the fiber and the matrix.

or experimental results and hence its validity was not
examined.

In this paper, we develop a new micromechanical
model for predicting the transverse modulus of unidi-
rectional continuous and discontinuous fiber compos-
ites, which is based on modeling a composite with a
regular array of volume elements, constructing a stress
pattern using simple averaging approaches for a rep-
resentative volume element in the direction transverse
to the fiber axis. With the present model the effects
of fiber aspect ratio, interfiber spacing and fiber end
gap on the transverse modulus of discontinuous com-
posites are discussed in detail. The present model is
compared with some existing experimental results for
various fiber/matrix systems. In addition, the present
model is compared with other models and the advan-
tages of the present model are demonstrated.

2. Theory
Consider a rectangular specimen with lengths ofc1, c2
andc3 (thec3 axis is parallel to the fiber axis or thex
axis) as shown in Fig. 1. It is assumed that the fibers in
the unidirectional fiber composite are distributed uni-
formly in the matrix and the fiber/matrix interfacial
adhesion is perfect (only if the fiber/matrix interfacial
adhesion is good enough, the interfacial adhesion has
little influence on transverse composite modulus since
Ecy is a property of material at low strain). The case
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of continuous fibers will be considered first. For both
square and hexagonal arrangements of fibers, a rep-
resentative volume element can be chosen as shown
in Fig. 1. The representative volume element can be
divided into three regions: I, II and III along thex-z
plane as shown in Fig. 1. In regions I and III, the ma-
trix bears the load alone and hence the mean matrix
strain ε̄my can be supposed to be approximately equal
to:

ε̄my = σy/Em (1)

whereσy is the applied stress in they direction andEm

the matrix modulus.
In any given cross-section ABB′A′ of region II par-

allel to thex-z plane (where the line A′B′ not shown in
Fig. 1 is parallel to the line AB), the stress equilibrium
condition can be written as follows:

2r f i

d f + δ σ f y + df + δ − 2r f i

d f + δ σmy = σy (2)

whereσ f y andσmy are the transverse fiber stress and
the transverse matrix stress, respectively.df is the fiber
diameter,δ the interfiber spacing and 2r f i the string
length of the fiber cross section intersecting with the
cross-section ABB′A′.

In region II, both the matrix and the fiber bear the
load. In the given cross-section ABB′A′, the matrix
strain must be the same as the fiber strain since the
fiber/matrix interface is assumed to be perfect (i.e. the
fiber is completely bonded with the matrix), otherwise
the fiber would debond from the matrix. Thus, Equation
2 becomes:

2r f i

d f + δ E f yε f y + df + δ − 2r f i

d f + δ Emε f y = σy (3)

whereE f y is the transverse fiber modulus andε f y the
transverse fiber strain.

We now estimate the mean transverse fiber strain ¯ε f y.
First, we need to evaluate the mean value ofr f i , namely,
r̄ f i . Assume the fiber diameter is uniformly divided
into n segments (n is very large), the length of each
segment is then equal to 2r f /n (r f is the fiber radius).
Thus

2r f

n

n∑
i = 1

2r f i = πr 2
f (4)

and

r̄ f i =
∑n

i = 1 r f i

n
= π

4
r f (5)

Replacingr f i with r̄ f i andε f y with ε̄ f y in Equation 3
gives:

2r̄ f i

d f + δ E f yε̄ f y + df + δ − 2r̄ f i

d f + δ Emε̄ f y = σy (6)

In addition, we suppose thatc1 = m1(df + δ) and
c2 = m2(df + δ), wherem1 andm2 are integers. Thus,
there arem1×m2 representative volume elements in the
composite. The fiber volume fraction can be obtained
as:

v f =
πr 2

f

(df + δ)2
(7)

Equations 5–7 can be combined to give the mean trans-
verse fiber strain:

ε̄ f y = σy√
πv f

4
E f y +

(
1−

√
πv f

4

)
Em

(8)

Therefore, the composite strainεcy is given by

εcy = vII ε̄ f y + (vI − vIII )ε̄my

= df

d f + δ ε̄ f y + δ

df + δ ε̄my (9)

wherevI , vII andvIII are the volume fractions of regions
I, II and III, respectively. Consequently, by inserting
Equations 1, 7 and 8 into Equation 9, we obtain

εcy =
√

4v f

π

σy√
πv f

4
E f y +

(
1−

√
πv f

4

)
Em

+
(

1−
√

4v f

π

)
σy

Em
(10)

Sinceεcy = σy/Ecy, the transverse composite modulus
Ecy follows immediately from Equation 10:

1

Ecy
=

√
4v f /π√

πv f /4E f y +
(
1−√πv f /4

)
Em

+
(
1−√4v f /π

)
Em

(11)

Equation 11 gives the transverse modulus of unidirec-
tional continuous fiber composites. An expression for
the transverse modulus of discontinuous fiber compos-
ites is now developed.

Assume that fibers of a lengthL f are distributed
uniformly in the composite, and the interfibre spac-
ing is δ and the gap between two end-to-end fibers is
L1. A representative volume element is arbitrarily cho-
sen as shown in Fig. 2. The fiber volume fraction is
then

v f =
πr 2

f L f

(2r f + δ)2(L f + L1)

= π

4(1+ δ/df )2(1+ L1/L f )
(12)

4955



          
P1: SDI/RNT P2: PNR/ATR P3: SNH 1197-97 November 20, 1998 3:30

Figure 2 Schematic drawing of a discontinuous fiber composite and a corresponding simple representative volume element. A perfect bond is assumed
between the fiber and the matrix.

Using the same treatment as for the case of continu-
ous fibers, we divide the cross section of the element
into three regions parallel to thex-z plane as shown in
Fig. 2. In regions I and III, the matrix bears load alone,
then the mean matrix strain is the same as expressed in
Equation 1.

In region II, both the fiber and the matrix bear the load
and their strains in this region should be approximately
the same. The stress equilibrium equation in the cross-
section parallel to thex-z plane denoted by the dotted
line can be written as follows:

2r f i L f

(df + δ)(L f + L1)
E f yε f y

+
[
1− 2r f i L f

(df + δ)(L f + L1)

]
Emε f y= σy (13)

1

Ecy
=

√
4v f (1+ L1/L f )/π√

πv f /[4(1+ L1/L f )]E f y +
(
1−√πv f /[4(1+ L1/L f )]

)
Em
+
(
1−√4v f (1+ L1/L f )/π

)
Em

(16)

By replacing 2r f i with 2r̄ f i andε f y with ε̄ f y in Equa-
tion 13 and combining with Equation 12, then we get
the mean transverse fiber strain

ε̄ f y =

σy√
πv f

4(1+ L1/L f )
E f y +

(
1−

√
πv f

4(1+ L1/L f )

)
Em

(14)

The composite strain is then given by

εcy = df

d f + δ ε̄ f y + δ

df + δ ε̄my (15)

By inserting Equations 1, 12 and 14 into Equation 15
and using the relationship:εcy = σy/Ecy, we obtain
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In the limit of L1/L f = 0, the transverse modulus of
discontinuous fiber composites becomes independent
of the fiber length (or fiber aspect ratio) and Equation 16
reduces to Equation 11.

3. Results and discussion
The following data are used for the parameters, ex-
cept where noted otherwise:E f y = 72.4 GPa,Em =
2.1 GPa,L1 = 10µm, L f = 1000µm, df = 10µm
andv f = 0.50. The transverse composite modulus is
evaluated based on Equations 12 and 16. The effects
of fiber aspect ratio, interfiber spacing and fiber-end-
gap on the transverse modulus of discontinuous fiber
composites are discussed in detail in the following.

Fig. 3 exhibits the effects of fiber aspect ratio and
interfiber spacing on the transverse modulus of discon-
tinuous fiber composites. It can be seen from Fig. 3a that
the transverse composite modulus decreases rapidly
with the increase of fiber aspect ratio when it is small
(e.g.< 100) whereas it decreases slowly with increas-
ing fiber aspect ratio and becomes insensitive to the
fiber aspect ratio when it is large (e.g.> 100). This is
because increasing the fiber length decreases the num-
ber of fiber ends and thus the amount of matrix be-
tween fiber ends. Since the amount of matrix is fixed,
it moves towards the space between the fibers and in-
creases the interfiber spacing and thus decreases the
transverse composite modulus. Consequently, it is ob-
served in Fig. 3b that the interfiber spacing increases
rapidly with increase of fiber aspect ratio when it is
small (e.g.< 100) but increases slowly with fiber as-
pect ratio and eventually becomes insensitive to it when
it is large (e.g.> 100). The transverse composite modu-
lus decreases almost linearly with increase of interfiber
spacing (Fig. 3c).

Fig. 4 reveals the effect of fiber end gap on the trans-
verse modulus of composites. Since the interfiber spac-
ing decreases almost linearly with increase of fiber end
gap (see Fig. 4a) and the transverse composite modulus
decreases with increase of interfiber spacing as shown
in Fig. 3c, it is observed that the transverse modulus of
composites increases almost linearly with increase of
fiber end gap (see Fig. 4b).

4. Application and comparison
We now compare predictions using Equation 16 with
some existing experimental results [1, 25, 26] together
with predictions of the iRoM Equation [1, 5–7] and its
modified version [1], the Halpin-Tsai Equation [8–10],
the self-consistent theory [20, 21], the Chen-Cheng the-
ory (i.e. the cell-stress approach) [22] and the Whitney
theory [23].

The iRoM Equation is [1, 5–7]:

1

Ecy
= v f

E f y
+ vm

Em
(17)

(a)

(b)

(c)

Figure 3 Effects of fiber aspect ratio and interfiber spacing on the trans-
verse modulus of discontinuous fiber composites: (a)Ecy/Em vs L f /df

(b) δ/df vs L f /df and (c)Ecy/Em vs δ/df .

The modified iRoM (miRoM) Equation is [1]:

1

Ecy
= v f

E f y
+ vm

Em

−v f vm

ν2
f Em/E f y + ν2

mE f y/Em− 2ν f νm

v f E f y + vmEm

(18)

The Halpin-Tsai Equation [8–10] can be written as fol-
lows:

Ecy = Em(1+ 2αv f )/(1− αv f ) (19)

4957



              

P1: SDI/RNT P2: PNR/ATR P3: SNH 1197-97 November 20, 1998 3:30

(a)

(b)

Figure 4 Effect of fiber end gap on the transverse modulus of discon-
tinuous fiber composites: (a)δ/df vs L1/df and (b)Ecy/Em vs L1/df .

where

α = (E f y/Em− 1)/(E f y/Em+ 2) (20)

In Equations 17–20 the subscripty is used to denote the
transverse modulus of fibers for the case of transversely
isotropic fibers.

TABLE I Application of the present theory and other theories [1, 5, 8–10] to the existing experimental results for some glass/epoxy composites
[25]

Transverse stiffness,Ecy (GPa)

Experimental Halpin-Tsai iRoM miRoM The present
Material Em (GPa) v f results equation equation equation model

Glass bead/epoxy 2.1 0.5 10.3 — — — 11.56
2.8 0.5 11.7 — — — 14.33

Short glass fiber/epoxy 2.1 0.5 9.6 7.44 4.08 4.59 9.09
Continuous glass fiber/epoxy 2.1 0.6 12.4 9.82 5.03 5.66 12.95

2.8 0.6 14.5 12.48 6.62 7.41 16.07

TABLE I I Application of the present theory and other theories [1, 5, 8–10] to the existing experimental results for a graphite/epoxy composite and
a boron/epoxy composite [1]

Transverse stiffness,Ecy (GPa)

Experimental Halpin-Tsai iRoM miRoM The present
Material v f results equation equation equation model

Graphite/epoxy 0.70 10.3 10.11 7.74 8.21 11.40
Boron/epoxy 0.50 18.5 13.29 6.84 7.77 16.23

Equation 16 and the first three models above (Equa-
tions 17–19) are applied to some existing experimental
results for continuous, discontinuous and particulate
glass/epoxy composites (continuous and particulate
composites are the two limiting cases of discontin-
uous fiber composites) [25]. The results are listed
in Table I, where particular values of the parameters
are E f y= 72.4 GPa, Em= 2.1–2.8 GPa,ν f = 0.22,
νm= 0.35 andv f = 0.5 (for short glass fibers and glass
beads) and 0.6 (for continuous glass fibers) [25]. For
the case of short-fibers,L1/L f = 0.02 was used. The
theoretical values of the transverse modulus (assuming
L1= δ andL f = df = 10µm) are also given in order
to compare the present theory with the experimental re-
sults for particulate composites. Table I shows that the
theoretical results predicted by Equation 16 agree very
well with the experimental results for the two cases of
continuous and discontinuous fibers. For the particulate
composite, the predicted values of the transverse modu-
lus by this theory are reasonably close to the experimen-
tal results. The difference in the latter can probably be
attributed to the fact that the fibers with an aspect ratio
of one are cylindrical in shape and not normal parti-
cles. The results predicted by the Halpin-Tsai Equation
(Equation 19) are approximately consistent with but
somewhat lower than the experimental results. How-
ever, the iRoM and miRoM (Equations 17 and 18) give
much lower predicted values of the transverse com-
posite modulus than those experimentally observed, as
reported in [1].

The predictions of the models above are also com-
pared with experimental results for the graphite/epoxy
composite system, where the graphite fibers are trans-
versely isotropic and the boron/epoxy composite sys-
tem, where the boron fibers have a very high modu-
lus [1]. The results are listed in Table II, where par-
ticular values for the parameters areE f y= 16.6 GPa
for graphite fibers,E f y= 410 GPa for boron fibers,
Em = 3.45 GPa,ν f = 0.2 for both fibers,νm = 0.35
andv f = 0.70 (for graphite fibers) and 0.50 (for boron
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Figure 5 Comparison of the present theory with the self-consistent the-
ory [20, 21] and experimental results [26] for a nylon 12-PRD49 system
with L f /df = 882 andE f /Em = 105.

fibers) [1]. Table II reveals that for the graphite/epoxy
system the present theory and the Halpin-Tsai the-
ory are in good agreement with the experimental re-
sult while the iRoM and its modified version provide
lower predicted values than the experimental one. For
the boron/epoxy system, the present theory provides a
better prediction than all other three theories which give
much lower values than the experimental result.

Fig. 5 depicts the comparison of the present theory
with the self-consistent theory [20, 21] and the ex-
periments [26] on the transverse modulus for a nylon
12-PRD49 composite system whereE f /Em = 105 and
L f /df = 882. A uniform fiber distribution i.e.L1 = δ
is assumed. At low fiber volume fractions, the present
theory agrees very well with the experimental results
but the predicted values with the self-consistent theory
are lower than the experimental values. At high fiber
volume fractions the theoretical values are higher than
the experimental ones. For the present theory, the dis-
crepancy may be attributed to the fact that the value of
fiber end gap (L1) used may be greater than the real
value since the ends of fibers are closer to each other
asv f increases. A greater value ofL1 would lead to a
higher prediction of the transverse composite modulus.

The comparison of the present theory with the self-
consistent theory [20, 21] and the Halpin-Tsai equation
[8–10] is further made in Fig. 6, whereE f /Em = 20,
ν f = 0.3 andνm = 0.35. The predicted values by
the present theory are somewhat higher than those pre-
dicted by the self-consistent theory [20, 21]. At lowv f ,
the predicted values by the Halpin-Tsai equation [8–10]
lie between those predicted by the other two theories; at
highv f , the predicted values by the Halpin-Tsai equa-
tion are lower than those predicted by the other two
theories.

The comparison of the present theory with the Chen-
Cheng theory (cell-stress model) [22] and the Halpin-
Tsai equation [8–10] is made in Fig. 7, whereE f /Em =
21.19, L f /df = 20 andL1/L f = 0.05. Fig. 7 shows
that the values of the transverse composite modulus
predicted by the present theory are higher than those
by the other two theories and the predicted values by
the Chen-Cheng theory are lower than those predicted

Figure 6 Comparison of the present theory with the self-consistent the-
ory [20, 21] and the Halpin-Tsai equation [8–10] in the predictions of
the transverse composite modulus as a function of fiber volume fraction,
whereL f /df = 5 and 100,E f /Em = 20,ν f = 0.3 andνm = 0.35.

by the Halpin-Tsai Equation which is for continuous
fiber composites. However, it has been clearly shown
in the present study and also in the self-consistent the-
ory [20, 21] and the Whitney theory [23] that the trans-
verse modulus of a unidirectional short-fiber compos-
ite is higher than that of a corresponding continuous
fiber composite sinceEcy decreases with fiber length,
and the Halpin-Tsai Equation has been well recognized
to give good predictions for continuous fiber compos-
ites or somewhat lower predictions for some short-fiber
composites, therefore the Chen-Cheng theory would
underestimate the transverse modulus of unidirectional
discontinuous fiber composites. Moreover, the effects
of interfiber spacing and fiber end gap on the transverse
composite modulus were not studied using the Chen-
Cheng theory, possibly because their expression forEcy

is too complicated to use.
Fig. 8 shows the comparison of the present theory

with the Whitney theory [23] and the Halpin-Tsai equa-
tion [8–10], whereE f /Em = 70,v f = 0.4 andL1/δ =
1 (uniform fiber distribution). Fig. 8 shows that the pre-
dicted values ofEcy by the present theory are higher
than those predicted by the Whitney theory [23]. The

Figure 7 Comparison of the present theory with the Chen-Cheng theory
[22] and the Halpin-Tsai equation [8–10], whereL f /df = 20,L1/df =
0.05 andE f /Em = 21.19.
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Figure 8 Comparison of the present theory with the Whitney theory [23]
and the Halpin-Tsai equation [8–10], whereE f /Em = 70, v f = 0.4
andL1/δ = 1 (uniform fiber distribution).

values predicted by the Halpin-Tsai equation [8–10] lie
between those predicted by other two theories except
at L f /df < about 1.5. Since the Halpin-Tsai Equation
is for continuous fiber composites and the transverse
composite modulus of continuous composites should
be higher than that of discontinuous fiber composites,
then the Whitney theory would give lower predictions
of Ecy for discontinuous composites.

In conclusion, the present model for the transverse
modulus of unidirectional fiber composites has some
advantages over other models not only because the
present model considers the effects of fiber aspect ratio,
interfiber spacing and fiber end gap and the expression
for Ecy is simple in form and hence easy to use but also
because it gives precise predictions of the transverse
composite modulus for various fiber/matrix systems.

5. Conclusions
In the present study, a new micromechanical model has
been developed for the transverse modulus of unidirec-
tional continuous and discontinuous fiber composites.
It has been shown that the transverse modulus of dis-
continuous fiber composites decreases rapidly with the
increase of fiber aspect ratio when the fiber aspect ra-
tio is small while the transverse modulus is insensitive
to the fiber aspect ratio when the fiber aspect ratio is
large. Moreover, the transverse modulus of discontin-
uous composites increases with the decrease of inter-
fiber spacing and the increase of fiber end gap. The
present model has been revealed to give reliable pre-
dictions of the transverse composite modulus for vari-
ous fiber/matrix systems. The comparison of this model
with other models and experiments has demonstrated
that the present model has some advantages over other
theories.
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